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BACKGROUND: The growing applications of nanotechnologic products, such as quantum dots
(QDs), increase the likelihood of exposure. Furthermore, their accumulation in the bioenvironment
and retention in cells and tissues are arousing increasing worries about the potentially harmful side
effects of these nanotechnologic products. Previous studies concerning QD cytotoxicity focused on
the reactive oxygen species produced by QDs. Cellular calcium homeostasis dysregulation caused by
QDs may be also responsible for QD cytotoxicity. Meanwhile the interference of QDs with
voltage-gated sodium channel (VGSC) current (Iy,) may lead to changes in electrical activity and
worsen neurotoxicologic damage.

OBJECTIVE: We aimed to investigate the potential for neurotoxicity of cadmium selenium QDs in a
hippocampal neuronal culture model, focusing on cytoplasmic calcium levels and VGSCs function.
METHODS: We used confocal laser scanning and standard whole-cell patch clamp techniques.

RESULTS: We found that @) QDs induced neuron death dose dependently; &) cytoplasmic calcium
levels were elevated for an extended period by QD treatment, which was due to both extracellular
calcium influx and internal calcium release from endoplasmic reticulum; and ¢) QD treatment
enhanced activation and inactivation of Iy,, prolonged the time course of activation, slowed Iy,

recovery, and reduced the fraction of available VGSCs.

CONCLUSION: Results in this study provide new insights into QD toxicology and reveal potential
risks of their future applications in biology and medicine.
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Quantum dots (QDs) are colloidal nanocrys-
talline semiconductors with unique optical
and electrical properties (Bruchez et al.
1998). As a new class of inorganic fluoro-
phore, which has the advantages of broad
absorption spectra, narrow emission spectra,
stable photostability, and long fluorescent
lifetime, QDs are gaining widespread recog-
nition and are rapidly applied to fluorescent
labeling of cellular proteins (Kaul et al. 2003;
Mansson et al. 2004; Sukhanova et al. 2004),
cell tracking (Dubertret et al. 2002; Jaiswal
et al. 2003), and even imaging in vivo
(Akerman et al. 2002; Chen et al. 2004; Gao
et al. 2004; Lim et al. 2003; Morgan et al.
2005). Although some reports have evaluated
the cytotoxicity of various QDs in different
cell lines under different circumstances (Chan
et al. 2006; Kirchner et al. 2005; Lovric et al.
2005; Zhang et al. 2006), little is known
about QD toxicity both 77 vive and in vitro.
Santra et al. successfully labeled brain tis-
sue with TAT-conjugated CdSratioMn/ZnS
QD:s that were intraarterially delivered to the
rat brain (Santra et al. 2005), but this method
of brain dissue labeling raised subsequent wor-
ries about QD toxicity on the toxin-susceptible
brain. In fact, many QDs may seem harmless,
but they can be destabilized because of their
sequestration in tissues and long-term expo-
sure to the bioenvironment. Cell structures

and functions can be impaired when cells are
exposed to unstable, poorly capped, or coated
QDs (Choi et al. 2007, 2008; Hardman 2006;
Lovric et al. 2005). In other words, even if the
QD:s are well modified, the potential risks are
still present in subsequent biologic and clinical
applications of QDs.

In the central nervous system (CNS),
voltage-gated sodium channels (VGSCs) are
responsible for both initiation and propagation
of action potentials of the neurons. Therefore,
potential modulation of the functional proper-
ties of VGSCs by QDs would be expected to
alter the activity and functions of CNS neu-
rons. Meanwhile, there is hardly a biological
reaction in the CNS that is not regulated,
directly or indirectly, by calcium ions.
Transient rises of calcium ions in the cytoplas-
mic levels are believed to serve as second mes-
senger signals that control numerous neuronal
functions, whereas sustained elevation of cyto-
plasmic calcium levels is obviously deleterious
to various neuronal functions. Of even greater
concern is that the sustained increase of intra-
cellular calcium may result in cell apoptosis/
death (Fox et al. 1999; McConkey and
Orrenius 1996; Nicotera et al. 1994). Some
reports have shown that QDs could impair cell
functions and even induce cell apoptosis or
death in certain cell lines (Chan et al. 2006;
Choi et al. 2007, 2008; Medintz et al. 2005),
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but these studies mostly focused on the free
Cd?* (QD core degradation), free radical for-
mation, and interaction of QDs with intracel-
lular components, and little attention has been
paid to the potential toxicity exerted by QDs
through intracellular calcium steady-state and
functional properties of neuronal ion channels.

Using confocal laser scanning and standard
whole-cell patch clamp techniques, the present
study explored the potential for the neuro-
toxicity of unmodified cadmium selenium
(CdSe) QDs in a rat primary hippocampal cul-
ture model, focusing on cytoplasmic calcium
levels and VGSC functions.

Materials and Methods

Cell culture and cell treatment. We used a hip-
pocampal culture model in this study, as the
hippocampus is the key learning and memory
area of the brain. Low-density cultures of dis-
sociated postnatal day O rat hippocampal neu-
rons were prepared as described by Bi and Poo
(1998) with some modifications. Hippocampi
were removed from postnatal day 0 rat pups
and treated with trypsin for 12-15 min at
37°C, followed by gentle trituration with a
pipette. The dissociated cells were then plated
at densities of 104-10° cells/mL on poly-L-
lysine—coated glass coverslips in 35-mm Petri
dishes or in 96/24-well culture plates (Costar,
Cambridge, MA, USA). The plating medium
was Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal
bovine serum and 10% Ham’s F-12 with
glutamine (all from Gibco, Carlsbad, CA,
USA). Sixteen to twenty-four hours after
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plating, the culture medium was changed to a
maintenance medium containing neurobasal
media and 5% B-27 supplement (Gibco).
Cultures were maintained at 37°C in a humid-
ified atmosphere of 95% O, and 5% CO,.
Cultured neurons were used for experiments
after culturing for 1 week.

For cell viability tests and electrophysio-
logic recordings, different volumes of 1-mM
QD stock solutions dissolved in serum-free
maintenance medium were added into
35-mm Petri dishes or 96/24-well culture
plates (Costar) to the final desired concentra-
tions of 1, 10, and 20 nM after cells were cul-
tured for 1 week. The medium was replaced
with standard maintenance medium after the
cells were cultured in the QD-containing
maintenance medium for an additional 24 hr
before the experiments. For calcium imaging,
different doses of QDs (1, 10, 20 nM) dis-
solved in the external solutions were micro-
perfused onto individual cells through a
quartz perfusion head.

Rats were obtained from the Laboratory
Animal Center of the University of Science
and Technology of China. All experiments
were conducted in accordance with the
National Institutes of Health Guide for the
Care and Use of Laboratory Animals (Institute
of Laboratory Animal Resources 1996). All
efforts were made to minimize the number of
animals used and their suffering.

QD preparation. Unmodified CdSe QDs
were synthesized and provided by J.-G. Hou
and X.-B. Wang and co-workers (Structure
Research Laboratory, University of Science
and Technology of China). Additional details
are available in their published report (Zeng
et al. 2006). The CdSe nanoparticle was
2.38 nM in diameter. The freshly produced
QDs were dialyzed for cadmium-free envi-
ronment just before the experiments.

DAPI staining. The apoptosis of cells was
determined by evaluating nuclear condensation
after staining cell nuclei with 4’,6-diamidino-
2-phenylindole (DAPI) and by quantification
of DNA fragment formation using Cell Death

= = I =]
S = =) 53

Cell viability (%)

N
S

0 1 10 2
QD (nM)

Detection ELISAPLUS (Roche Molecular
Biochemicals, Indianapolis, IN, USA). For
DAPI staining, cells were washed two times
with phosphate-buffered saline containing
137 mM NaCl, 2.7 mM KCl, 4.3 mM
Na,HPOy, and 1.4 mM KH,POy (pH 7.2),
fixed with 4% paraformaldehyde for 20 min,
then incubated with 300 nM DAPI (Sigma
Chemical Co., St. Louis, MO, USA). After
labeling, cells were visualized using an Olympus
microscope (Olympus, Tokyo, Japan) under
light or filter designed for DAPI fluorescence.
Cells were considered apoptotic when they
showed either fragmented or condensed
nuclei. At least 350 cells were counted in each
experiment.

MTT assay. The percentage of cell survival
was measured using the 3-[4,5-dimethylthia-
zol-2-yl]-2,5-diphenyltetrazolium (MTT)
colorimetric assay. MTT (0.5 mg/mL; Sigma)
dissolved in the maintenance medium was
added to the 96-well culture plates, and the
cultures were incubated for an additional 4 hr
at 37°C. The culture medium was then
replaced with 200 pL dimethylsulfoxide
(Sigma) to dissolve the formazan products in
each well. Spectrophotometric data were mea-
sured using an ELX808 microplate reader
(BioTeK, Winooski, VT, USA) at a wave-
length of 570 nm. In each experiment, seven
wells were used, and experiments were
repeated three times.

Calcium imaging. Primary cultured
hippocampal neurons were washed with
the standard external solution containing
150 mM NaCl, 5 mM KClI, 2 mM CaCl,,
1 mM MgCly, 10 mM HEPES, and 10 mM
D-glucose and buffered to pH 7.3. The stan-
dard external solution was continuously bub-
bled with carbogen (95% O,, 5% CO,).
Cells were loaded with 5 pM fluo-3-AM
(Molecular Probes, Eugene, OR, USA) and
pluronic F-127 [Sigma, 0.004% (wt/vol)
final] in the standard external solutions at
37°C for 40-45 min. Endogenous esterases
converted nonfluorescent fluo-3-AM into
fluorescent fluo-3. Cells were then washed
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Figure 1. Effect of QDs on cell death in cultured control and QD-treated hippocampal neurons. (A4) Cell via-
bility measured by MTT assay; data represent mean + SE of three independent experiments.
(B) Percentage of surviving neurons (mean + SE) evaluated using the DAPI staining method.

*p < 0.05 compared with control.
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twice with the external solutions and incu-
bated at 37°C for 20-25 min before imag-
ing. Cultures were imaged with a Carl Zesis
scanning confocal microscope (Carl Zeiss
Company, Heidenheim, Germany).

Cells were continuously perfused with the
external solutions flowing at 5 mL/min, and
different doses of QDs dissolved in the exter-
nal solutions were microperfused onto indi-
vidual cells through a quartz perfusion head.
For calcium-free groups, calcium was excluded
from the external solutions, while 40 pM
EGTA (Sigma) was added to ensure calcium-
free environment. For the thapsigargin group,
cultures were incubated with 2 pM thapsigar-
gin for at least 40 min before imaging to
deplete endoplasmic reticulum (ER) calcium
stores (Doutheil et al. 1999).

Epifluorescent excitation for fluo-3 was at
488 nm, and emission was collected at 510 nm.
For measuring the change of cytoplasmic cal-
cium levels under QD exposure, time-lapse
sequences were recorded at a scanning rate of
each 60 sec. Camera gain was adjusted to give
baseline maximal fluorescence levels of 40-100
(arbitrary units) of a maximal 8-bit signal out-
put of 256. Cell fluorescence (F) during the
5-min baseline period was Fy. Fluorescence
measurements for each cell were normalized to
the average fluorescence intensity. Region of
indexes (ROIs) were defined in the first image,
and the normalized fluorescence changes
(F = Fy)/Fy, that is, AF/F,, were measured
throughout the image sequence. All settings of
the scanning system and the complete data
acquisition were controlled and collected by
LSM 510 software (Carl Zeiss Company).

Electrophysiologic recordings. Conventional
whole-cell patch clamp recordings were per-
formed in the primary cultured hippocampal
neurons under standard configuration. Patch
pipettes were pulled from glass capillaries with
an outer diameter of 1.5 mm on a two-stage
puller (PP-830, Narishige, Tokyo, Japan). The
pipettes (3—5 M resistance) were filled with a
solution containing 120 mM CsCl, 20 mM
tetracthylammonium chloride (TEA-CI),
2 mM MgCly, 10 mM EGTA, 2 mM ATP
disodium (Na,-ATP), and 10 mM HEPES
with pH adjusted to 7.20 using Tris-base and
osmolality of 285-290 mOsm/L. Cells were in
the standard external solutions 150 mM NaCl,
5 mM KCI, 2 mM CaCl,, 1 mM MgCl,,
10 mM HEPES, and 10 mM D-glucose.
External solutions for recording VGSC current
(Ing) containing 145 mM NaCl, 5 mM KCl,
1 mM MgClz, 2 mM CaClz, 0.2 mM Cdclz,
0.1 mM NiCl,, 5 4-aminopyridine (4-AP),
10 mM HEPES, and 10 mM glucose were
applied onto the cells through the Y-tube
microperfusion system (Murase et al. 1990).
The pH of each external solution was adjusted
to 7.2 with Tris-base and the osmolality was
adjusted to 320-325 mOsm/L with sucrose;
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both external solutions were preoxygenated
before use. Cells were considered only when
the seal resistance was > 500 MQ and the series
resistance (< 30 MQ) changed < 20% through-
out the experiment. Fast and slow capacitances
were neutralized, and series resistance was
always compensated for > 85% with internal
voltage-clamp circuitry.

Data collection and analysis. Data were
acquired with a PC-IIC patch-clamp ampli-
fier (HUST-IBB, Wuhan, China) connected
to a computer via an ITC-16 computer inter-
face (Instrutech, Elmont, NY, USA), digitized
at 20 kHz, filtered at 2 kHz, stored on a com-
puter hard disk, and analyzed with Igor
Pro 4.0 software (Wavemetrics, Lake Oswego,
OR, USA) and Origin 7.5 (OriginLab
Corporation, Northampton, MA, USA).
Statistical analysis of the data was provided as
mean + SE. The effect of QDs on cell viabil-
ity and cytoplasmic calcium levels was identi-
fied using a two-way analysis of variance,
followed by a post hoc test. The effect of QDs
on sodium channels was determined by using
the Student’s #test with paired comparisons.
Significance for all values was set at p < 0.05.

Results

QDs could induce cell death in a dose-depen-
dent manner. We used the MTT assay and
DAPT staining to test the viability of primary
cultured hippocampal neurons under different
doses of QD exposure for 24 hr. The percent-
age of cell survival was first measured using the
MTT method. At 1 nM, QDs did not induce
cell loss (97.6 + 4.0% of control cells
remained), but at high doses (10 and 20 nM),
cell loss was significant compared with control
(80.4 + 4.3% and 71.2 + 4.4% of control cells
remained, respectively) (Figure 1A). Second,
to determine the effect of QDs on cell viability

1nM QD

Control

Quantum dots elevate cytoplasmic Ca2* and impair voltage-gated sodium channels

in cultured hippocampal neurons, we used
DAPT staining to assess the level of cell death
caused by QDs. In accordance with the results
above, we found no significant difference in
this type of cell death between control cells
and cells treated with 1 nM QDs (94.4 =
3.6% survival vs. 92.8 + 2.7%), whereas we
did find significant differences between cells
treated with 10 and 20 nM QDs and control
cells (80.2 + 4.8% and 72.1 + 3.4% of surviv-
ing control cells, respectively) (Figure 1B).
Both for the MTT assay and DAPI staining,
we found significant differences when we
compared 1-, 10-, and 20-nM QD groups
with each other. These results demonstrated
that QD treatment for 24 hr could increase
the death of primary cultured hippocampal
neurons dose dependently.

QDs elevated intracellular calcium levels
via extracellular calcium influx as well as
internal calcium release. We applied calcium
imaging to assess the effect of QDs on calcium
steady-state in cultured hippocampal neurons.
It showed that acute 10- and 20-nM QD
applications could increase the intracellular cal-
cium levels as the Fluo-3 fluorescence ratio
increased from basal to 0.33 + 0.01 and 0.47 +
0.02, respectively, which had a more signifi-
cant increase compared with that of control
(p < 0.01 and p < 0.01, respectively; # = 9),
whereas acute 1-nM QD application failed to
induce significant rise in intracellular calcium
level compared with that of control (p > 0.05;
n = 8) as the Fluo-3 fluorescence ratio changed
to 0.03 = 0.01 from basal. These data sug-
gested that the acute application of QDs could
affect intracellular calcium steady-state by ele-
vating the intracellular calcium concentration
(Figure 2).

To explore further that intracellular cal-
cium elevation induced by QD application is

10nM QD 20 nM QD

El 0.7

Ratio (AF/Fg)

due to extracellular calcium influx or internal
calcium release, we used calcium-free external
solutions and 2-pM thapsigargin preincubated
external solutions.

Figure 3G shows that acute 10-nM QD
application could elevate the Fluo-3 fluores-
cence ratio from basal to 0.23 + 0.01 in the
calcium-free group (p < 0.01 vs. control;
n =9) in cultured hippocampal neurons,
whereas Figure 3H shows that acute 10-nM
QD application could also induce a significant
but smaller elevation on the Fluo-3 fluores-
cence ratio from basal to 0.13 + 0.01 in the
thapsigargin group (p < 0.01 vs. control;
7 =9). When calcium-free solutions were pre-
incubated with 2 pM thapsigargin, acute
application of 10 nM QDs failed to signifi-
cantly elevate the Fluo-3 fluorescence ratio,
which was from basal to 0.07 + 0.01 (p > 0.05
vs. control; # = 9) (Figure 3I). The extent of
elevation of intracellular calcium levels
induced by acute application of 10 nM QDs in
standard external solutions, calcium-free exter-
nal solutions, thapsigargin-preincubated exter-
nal solutions, and thapsigargin-preincubated
calcium-free external solutions is expressed in
Figure 3].

Effects of QDs on VGSCs. Here we used a
standard whole-cell patch clamp technique to
study the effects of QDs on VGSCs in cul-
tured hippocampal neurons. For recording
inward sodium currents that were evoked by
depolarizing pulses from the holding potential
of =80 mV, voltage-gated potassium currents
were blocked by intracellular Cs* (120 mM)
and TEA (20 mM) and extracellular 4-AP
(5 mM); at the same time, voltage-gated cal-
cium currents were extracellularly blocked by
application of Cd?* (0.2 mM) and Ni?*
(0.1 mM). The inward currents could be
reversibly abolished by 0.5 pM tetrodotoxin

| Control
064 |V 1nMQD
>10nM QD
054 |G 20nM QD
0.4 4
0.3
0.2 4
0.14
0.04

-0.14

- - —Tr—Tr T
0 200 400 600 800 1,000 1200 1,400
Time (sec)

Figure 2. Effect of QD exposure on sustained elevation of cytoplasmic calcium concentration in cultured control QD-treated hippocampal neurons. In each experi-
ment, the images were obtained under calcium fluorescence before QD exposure (A7-D7) and 5 min after QD exposure (A2-D2); bar = 20 pM. (E) Traces show
mean + SE of calcium fluorescence ratios (AF/Fy) before and after QD exposure; 10 nM and 20 nM QD exposure significantly elevated calcium fluorescence.
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(TTX) (data not shown), and thus were
referred as TTX-sensitive Iy,

Effects of QDs on the properties of Iy,
activation. Effects of QDs on the current-volt-
age curve (I-V) and on the conductance voltage
(G-V) of I, are illustrated in Figure 4. We
applied a series of 50-msec voltage steps
between =70 mV and +30 mV preceded by the
holding potential of —-80 mV to evoke the cur-
rents. Representative traces of Iy, in control
and in 10 nM QDs are presented in Figure 4A;
10 and 20 nM QDs induced depolarizing

Calcium free

shifts of peak voltage, at which the current
amplitudes reached the maximum, to approxi-
mately —30 mV and —20 mV, respectively. The
peak voltage in 1 nM QDs was —35 mV,
which showed no evident differences compared
with the peak voltage in the control group
(=35 mV) (Figure 4B).

The G-V curve was successfully fitted with
a Boltzmann equation. The curves were shifted
to the right in 10 and 20 nM QDs (Figure 4C).
The values of Vy,, at which the conductance
of Iy, reaches half of its maximum, were

Thapsigargin

shifted from —45.3 £ 0.4 mV in control
(7 =8) to —40.8 + 0.5 mV in 10 nM QDs
(p < 0.05 compared with control; 7z = 8) and
-37.8 + 0.7 mV in 20 nM QDs (p < 0.05
compared with control; 7 = 8). We found no
significant difference between the values of
Vi in 1 nM QDs (-45.1 + 0.6 mV) and
those in control (p > 0.05; 7 = 8).

Effects of QDs on time course of Iy,. The
effects of different concentrations of QDs on
time course of Iy, including its fast activation
and rapid inactivation time, are presented in

Calcium free and thapsigargin
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Figure 3. Extracellular calcium influx and internal calcium release involvement in QD-induced elevation of cytoplasmic calcium concentration in cultured
hippocampal neurons. Images [(4; control) and (B; calcium free); (C; control) and (D; thapsigargin); (E; control) and (F; calcium free and thapsigargin)] were
obtained under calcium fluorescence before QD exposure (A7-F1) and 5 min after 10 nM QD exposure (A2-F2). See “Materials and Methods” for details; bar =
20 pM. (G—J) Effect of 10 nM QD exposure on calcium fluorescence (AF/Fy ratio; mean + SE) in (G) calcium-free external solutions, (H) thapsigargin-preincubated
external solutions, (/) thapsigargin-preincubated calcium-free external solutions, and (J) standard external solutions, calcium-free external solutions,
thapsigargin-preincubated external solutions, and thapsigargin-preincubated calcium-free external solutions.
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Figure 5. High concentrations of QDs post-
poned activation of Iy, (Figure 5B) at the com-
mand voltage of —30 mV. In control cells, Iy,
reached maximal peak 0.9 + 0.1 msec (7 = 8)
after stimulation. In 1 nM QDs, Iy, reached
maximal peak 1.0 £ 0.1 msec (7 = 8), and it
showed no significant difference compared with
control. In cells incubated with 10 and 20 nM
QDs, Iy, reached a maximal peak of 1.4 =
0.2 msec (7 = 8), and 1.3 + 0.1 msec (# = 8),
respectively, and both showed significant differ-
ences compared with control (p < 0.05). The
effect of high concentrations of QDs on slow-
ing down Iy, activation also existed at lower
and higher voltages (Figure 5A).

The rapid inactivation phase of Iy, evoked
by pulse from —80 mV to —30 mV, was well
fitted with a single exponential equation and its
time constant was calculated. In this study,
QDs had no significant effect on the decay
time of Iy, (Figure 5C). The decay time con-
stants of Iy, were 1.8 + 0.2, 1.7 + 0.1, 1.9 +
0.1, and 1.9 + 0.2 msec in control (7 = 8), 1 (p
> 0.05 compared with control; 7 = 8), 10 nM
QDs (p > 0.05 compared with control; 7 = 8),
and 20 nM QDs, (p > 0.05 compared with
control; 7z = 8), respectively.

Effects of QDs on properties of Iy, inac-
tivation. We examined effects of QDs on
steady-state inactivation of Iy, using a dou-
ble-pulse protocol; 250-msec conditioning
prepulses, from —120 to =30 mV in 10-mV
increments, were applied before step depolar-
ization to the fixed potential of =30 mV
(Figure 6A). As shown in Figure 6B, Iy, was
normalized to the maximum current ampli-
tude, and data were fitted with a Boltzmann
equation; 10 and 20 nM QDs shifted the
steady-state inactivation curves in the depolar-
izing direction. The value of Vy/, was =58.7 +
1.4 mV in control (7 = 8), significantly
changed to —63.4 + 1.7 mV and -62.8 +
1.1 mV in 10 nM (p < 0.05 compared with
control; 7 = 8) and 20 nM QDs (p < 0.05
compared with control; 7 = 8), respectively.
We observed no significant change in 1 nM
QDs (=57.5 + 1.5 mV; p> 0.05; 7 = 8) com-
pared with control.

QDs slowed Iy, recovery and reduced
fraction of available sodium channels. To
study the time course of recovery of sodium
channels from inactivation, we applied a
double-pulse protocol as follows: a 30-msec
conditioning pulse from the holding potential
of =80 mV to =30 mV, a series of —80-mV
intervals varying from 2 msec to 100 msec, and
a—30-mV test pulse (Figure 7A). The peak
value of Iy, evoked by the conditioning pulse
was designated I}, whereas the peak value of
INa evoked by the test pulse was designated I,.
The ratio of I, to I; represents the recovery of
sodium channels from inactivation. The plot
of I,/1; versus the duration of —80-mV inter-
vals was well fitcted with a single exponential

Quantum dots elevate cytoplasmic Ca* and impair voltage-gated sodium channels

equation and then its time constant was calcu-
lated. As shown in Figure 7B, the time con-
stant of sodium channel recovery was 2.9 +
0.3 msec in control (7 = 8). It increased signifi-
cantly to 3.6 + 0.3 msec, 4.6 + 0.2 msec, and
3.8+ 0.2 msec in 1 (p < 0.0 compared with
control; 7 = 8), 10 (p < 0.05 compared with
control; 7z = 8), and 20 nM (p < 0.05 com-
pared with control; 7 = 8) QDs, respectively.

Control

A

0.0
-0.2
-0.4
3
= 08
-
| Control
08 O 1nMQD
1.0 A 10nM QD
v 20nM QD
-1.2 4

80 60 40 -20 0 20 40 60
Voltage (mV)

These results show that QDs significantly
slowed the recovery of Iy, from inactivation.
We also studied the effect of QDs on the
fraction of available channels using a double-
pulse protocol: holding potential of —-80 mV,
conditioning pulses to —30 mV with various
durations ranging from 20 msec to 120 msec,
30-msec intervals of =80 mV, and then
50-msec test pulses to —30 mV. We regarded

10nM QD

+30mV

—80mV —d

-80 60 40 20 0
Voltage (mV)

Figure 4. Effects of QDs on |y, activation in cultured control and QD-treated hippocampal neurons.
(A) Representative traces of activation of Iy, in control and 10nM QDs (ly, was activated by a series of
50-msec voltage steps between =70 and +30 mV from the holding potential =80 mV; the increment was
10 mV except from —60 to =30 mV, where the increment was 5 mV). (B) Current-voltage relationships of Iy,
in control, 1 nM QDs, 10 nM QDs, and 20 nM QDs (n =8 per group); current amplitudes were normalized to
the maximal ly, peak value of each group. (C) Steady-state activation of Iy, in control, 1 nM QDs, 10 nM
QDs, and 20 nM QDs (n =8 per group). Iy, peak current values (I) were transformed into conductances (G)
according to the equation G = I/(V;=V,e,), Where Vg, is the Na* reversal potential and V,, is the membrane
potential at which the current was recorded. The reversal potentials (V) were calculated from the
crossing between the prolongation of the current-voltage curves and the horizontal axis: 55.7, 53.3, 54.3,
and 56.5 mV, respectively, for control, 1 nM, 10 nM, and 20 nM QDs (not shown). Normalized peak conduc-
tances (G/Gax) were fitted with a Boltzmann function G/Gpax= {1+expl(Vq,-Vi)/V I}, where Gy is the
maximal conductance; Vy, is the command voltage; Vy, is the potential of half-maximal activation; and V,

is proportional to the slope at Vy),.
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Figure 5. Effect of QDs on time course of Iy, in control QD-treated hippocampal neurons (n =8 per group).
(A) Time to peak of Iy, against the command voltage. (B) Time to peak at the command voltage of =30 mV
plotted into histograms. (C) Time constants of fitted |y, decay plotted into histograms. Insets are represen-
tative traces of ly,, whose decay phases were fitted with a single exponential function.

*p < 0.05 compared with control.
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IN, evoked by conditioning pulses and test
pulses to =30 mV as I; and I,, respectively.
Along with the increase of the duration of the
conditioning pulses, Iy, evoked by the test
pulses decreased gradually (Figure 8A), indi-
cating a larger fraction of inactivated channels
(Cha et al. 1999). The ratios of 1,/I; were
lower in 10 and 20 nM QDs than in control
at all conditioning pulse durations; we
observed no significant difference in 1 nM
QDs compared with control (Figure 8B).
QD:s had no effect on Iy, activity-depen-
dent attenuation. We studied the effects of
QDs on activity-dependent attenuation of
sodium channels by applying a train of ten
30-msec depolarizing pulses to =30 mV at the
frequency of 5 Hz. Iy, was gradually reduced
with the sequence (Figure 9A), which may
suggest the slow process of recovery of sodium
channel from inactivation (Colbert and
Johnston 1998). The ratios of the amplitude
of the tenth to the first Iy, (I;¢/I;) were 0.84 =
0.02, 0.83 + 0.02, and 0.82 + 0.02 in 1 nM
QD:s (p > 0.05 compared with control; 7 = 8),
10 nM QDs (p > 0.05 compared with control;
n =8), and 20 nM QDs (p > 0.05 compared
with control; 7 = 8), respectively; the ratio was

0.83 + 0.03 in control (7 = 8) (Figure 9B).

Discussion
With nanotechnology science developing, the
prevalence of nanoparticles in society will be
increasing, as will the likelihood of exposures.
Many areas of these nanoparticles are unex-
plored, such as their potential adverse human
health effects. Some scientists have tried to
reduce QD toxicity for their further applica-
tions in the medical science through surface
modifications, including conjugation and cap-
ping with biomolecules and polymers
(Michalet et al. 2005; van Vlerken and Amiji
2006; Zhelev et al. 2006). The improved QDs
may seem innocuous, but their sequestration
in tissues or cells and long-term exposure to
the bioenvironment can destabilize them,
which further yields unprotected QDs.
Unfortunately, the unprotected QDs can
impair cell structures and functions and even
induce cell death (Cho et al. 2007; Choi et al.
2007, 2008; Hardman 2006; Lovric et al.
2005). Labeling of brain tissues with QDs
(Santra et al. 2005) and applications of
QDs in the CNS may present inevasible,
unprotected QD-induced risks on the toxin-
susceptible CNS.

Impairment of cell structures and func-

tions and a decrease in cell viability by QD
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treatment have been observed in a large num-
ber of in vitro studies in various cell lines, but
few in neurons (Choi et al. 2007, 2008; Clarke
et al. 2006; Kirchner et al. 2005; Medintz et al.
2005). In the present study, we found that QD
treatment could increase cell death in primary
cultured hippocampal neurons, which is con-
sistent with previous studies noted above.
When the cells were treated with QDs for
24 hr, certain morphologic changes such as
shrinking of the plasma membranes and chro-
matin condensation in nuclei could be seen
(data not shown); loss of plasma membrane
integrity and chromatin condensation are con-
sidered events in necrosis and apoptosis. This is
also consistent with the findings of Lovric et al.
(2005), who reported that unmodified cad-
mium telluride QDs induced damage to
plasma membrane, mitochondria, and nuclei.
Further, QD-induced cellular damage can be
partially prevented by N-acetylcysteine, a
strong antioxidant containing a mercapto
group, suggesting that QD-induced cyto-
toxicity may be due in part to generation of
reactive oxygen species. In fact, one possible
mechanism postulated to be responsible for
QD cytotoxicity is free radical formation, par-
ticularly reactive oxygen species (Clarke et al.
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Figure 6. Effects of QDs on Iy, steady-state inactivation in cultured control
and QD-treated hippocampal neurons. (A) Representative traces of steady-
state inactivation of Iy, with 250-msec conditioning prepulses stepped from
—120 to —30 mV and the membrane potential depolarized to a fixed test pulse
of =30 mV to evoke inward ly,. (B) Normalized currents (I/l,.y) plotted against
the voltages of conditioning pulses (n = 8) and fitted with a Boltzmann func-
tion 1/lax= {1+expl(V1/-Vn/V I}, where |4y is the maximal current, Vi is
the conditioning voltage, Vy, is the potential of half-maximal inactivation, and
V. is proportional to the slope at Vy,.
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Figure 7. Effect of QDs on Iy, recovery in cultured control and QD-treated
hippocampal neurons. (A) Representative traces of Iy, recovery. After a 30-
msec conditioning pulse from the holding potential of -80 mV to —30 mV and a
various interpulse interval of -80 mV ranging from 2 msec to 100 msec, a test
pulse to —30 mV was subsequently applied. (B) Percentage of peak current
recovery (l,/l;) against the time course of the interpulse interval (n = 8). The
curves were well fitted with a single exponential function.

920

Figure 8. Effects of QDs on Iy, fraction of activated channels in cultured con-
trol and QD-treated hippocampal neurons. (A) Representative traces in control
and 10 nM QDs; a conditioning pulse of various duration from 20 to 120 msec
was first applied to modulate the level of Na* channel inactivation and was fol-
lowed by a 30-msec interval and subsequent test pulse. (B) Plots I/I; against
the duration of the conditioning pulse (n =8).
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Figure 9. Effect of QDs on activity-dependent attenuation in cultured control
and QD-treated hippocampal neurons. (A) Superimposed traces of Na* chan-
nel attenuation in control and 10 nM QDs; a train of ten 30-msec depolarizing
pulses to —30 mV were applied at the frequency of 5 Hz. (B) Normalized current
amplitudes (I5/l;) were plotted against pulse number (n =8).
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2006; Hoet et al. 2004; Oberdorster et al.
2005), during the synthesis and application of
QDs. Because highly metabolically active
mitochondria are particularly sensitive and
vulnerable targets for cellular stress (Foster
et al. 2006), previous studies focused atten-
tion on QD-induced impairment of mito-
chondria structures and functions. Overload
of intracellular calcium concentration is also
one of the main causes of cell death (Fox et al.
1999; McConkey and Orrenius 1996;
Nicotera et al. 1994), and dysfunction of intra-
cellular calcium homeostasis can be expected to
impair various cell functions. In the present
study, we focused on the potential QD-
induced dysfunction of intracellular calcium
homeostasis, and for the first time we found
that unmodified QDs could rapidly and persis-
tently elevate intracellular calcium concentra-
tion in cultured hippocampal neurons, which
may have resulted in neuron death. The eleva-
tion of cytoplasmic calcium concentration is
believed to be caused by the extracellular cal-
cium influx and/or the internal calcium release
from calcium stores, mainly in ER. When cal-
cium was excluded from the external solutions,
10 nM QDs still induced a large elevation of
cytoplasmic calcium concentration, but less
than in standard external solutions. In cells
preincubated with 2 pM thapsigargin, we
observed a gentle increase in cytoplasmic cal-
cium concentration, but the increase was much
less than in standard solutions and calcium-free
solutions. Taken together, we conclude that
QD:s can elevate the cytoplasmic calcium con-
centrations, in which both internal calcium
stores (mainly ER) and extracellular calcium
are involved; calcium release from internal cal-
cium stores may be a main target of QD insult.
Although previous studies showed that QDs
bearing specific ligands could link to the given
cell membrane proteins/receptors (Akerman
et al. 2002; Dahan et al. 2003), nonspecific
QDs could adhere to cell surfaces, possibly
through interactions of QDs with glycopro-
teins and glycoplipids in the cell membrane
(Hardman 2006). Several in vitro studies
showed that QDs could be incorporated via
endocytic mechanisms or receptor-mediated
processes (Hoshino et al. 2004; Jaiswal et al.
2003). But how QDs trigger the extracellular
calcium influx and internal calcium release
from internal calcium stores is still not clear,
and this is a new area that remains to be
explored in understanding QD cytotoxicity.
Ton channels play an important role in cell
viability and function, especially in the CNS,
and their functional properties serve as a subtle
indicator of the condition and viability of the
cells. Kirchaner et al. (2005) found no impair-
ment on the hERG channel and the inward
rectified potassium channel in RBL and CHO
cell lines treated by CdSe/ZnS under their
experimental conditions. Considering that

Quantum dots elevate cytoplasmic Ca* and impair voltage-gated sodium channels

QDs may interact with various channels in
plasma membrane, we selected the VGSC (a
key molecular component responsible for both
action potential generation and propagation)
to examine the potential QD impairment on
channel functions in primary cultured hip-
pocampal neurons. The voltage dependence of
the activation of sodium channels suggests that
the transition from a resting, closed conforma-
tion to an open conformation is accompanied
by the outward translocation of several positive
charges across the membrane (Armstrong
1981; Hodgkin and Huxley 1952). In previous
studies, the binding of B-scorpion toxins with
the §3-54 extracellular loop in domain o of the
sodium channel a subunit enhanced closed-
state inactivation, thus causing a left shift of
steady-state inactivation (Cestele et al. 1998).
Likewise, QD treatment caused a negative shift
of steady-state inactivation, suggesting that the
QD treatment shifts the sodium channel to the
inactivated state and prevents its recovery from
the inactivated state to the resting state, thus
shifting the voltage dependence to a more
negative membrane potential. As a result of the
enhancement of inactivation, QD treatment in
neurons also leads to a slowing of the recovery
of sodium channels from inactivation and a
reduction of the fraction of available channels.
This coincidence suggests QDs or the degrad-
ing particles from QDs may bind to a receptor
site in the S3-54 loop at the extracellular end of
the S4 segment in domain II of the o subunit.
Considering that the S4 segments act as voltage
sensors to initiate activation in response to
changes in membrane potential (Catterall
1986; Stuhmer et al. 1989), the QD-induced
changes in functional properties of sodium
channels may be due to the binding of QDs or
the degrading particles from QDs to some sites
of $4 segments. At the same time, -scorpion
binding to neurotoxin receptor site 4 in the
$3-S4 extracellular loop in domain o of the
sodium channel o subunit was reported to
shift the voltage dependence of activation to
more negative potentials (Cahalan 1975;
Jaimovich et al. 1982; Wang and Strichartz
1983). Paradoxically, our results were inconsis-
tent with these results. In our observation, QD
treatment induced a shift in the voltage depen-
dence of activation of sodium channels in the
depolarizing direction. The inconsistency
between QD-induced impairment in kinetic
characters of activation and inactivation of
sodium channels implies the complexity and
diversity of QDs or the degrading particles
from QD:s attacking sites in sodium channels.
QD treatment also prolonged the time course
of activation, and this observation is consistent
with the elevatory threshold for activation.
Binding of QDs or the degrading particles
from QDs would lead to conformational
changes of the channels, thus slowing the
outward movement of the S4 extracellular loop
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in domain o of the sodium channel and delay-
ing the opening of the channel. The modula-
tion of VGSCs by QD treatment in primary
cultured neurons may be one aspect of neuro-
toxicity of unmodified QDs. However, the
detailed mechanisms are still unknown, and
further investigations are needed.

Although the mechanisms by which
unmodified CdSe QDs elevated cytoplasmic
calcium concentrations and impaired the
functional properties of sodium channels in
cultured hippocampal neurons remain a mat-
ter of conjecture, our results provide new
insights into QD toxicology and present the
potential risks of QD application, especially
in the CNS, for scientific and clinical usage.
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